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Abstract

The Red Storm SeaStar network interface contains
an embedded PowerPC 440 CPU that, out-of-the-
box, is used solely to handle network protocol
processing. Since this is a fully programmable
general purpose CPU, network researchers may
wish to program it to perform additional tasks such
as NIC-based collective operations and NIC-level
computation. This paper describes our experiences
developing custom firmware for the SeaStar. In
order to make the SeaStar more accessible to
non-experts, we have developed a C version of
the assembly-based firmware provided by Cray.
This high-level language firmware should be much
easier to understand and to quickly extend with
new features. A detailed overview of the SeaStar
programming environment and our C firmware will
be presented along with optimization techniques
that we have found beneficial.
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1 Introduction

This paper describes our experiences developing cus-
tom firmware for the Red Storm SeaStar network
interface using the C programming language [10].

∗Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United

States Department of Energy under contract DE-AC04-

94AL85000.

While using a C-based SeaStar firmware may not de-
liver 100% of the theoretical performance, it should
be much easier for other network researchers to
understand and extend than the assembly-based
firmware provided by Cray. It has also been more
amenable to system wide optimizations that are
available through modern C compilers. It is hoped
that the groundwork we have done to enable pro-
gramming SeaStar firmware in C will enhance the
attractiveness of Red Storm as a network research
platform and perhaps lead to novel uses of SeaStar.

In the past, programmable network interfaces
have been leveraged to accelerate collective com-
munication and to perform a variety of other NIC-
level computation [5, 7, 12, 15]. Underpowered NIC
processors are often cited as a limitation prevent-
ing more advanced uses of programmable network
interfaces. The level of performance provided by
SeaStar’s embedded PowerPC 440 CPU, coupled
with versatile send and receive DMA engines, may
allow new applications to be offloaded to the net-
work.

We believe C strikes a good balance of usability
and performance. C was originally designed to be a
systems programming language and, as such, excels
at interfacing with hardware. In C, there is no need
for the programmer to manage register allocation
and instruction scheduling by hand, as there is in
assembly. Although this may sacrifice some perfor-
mance, an optimizing C compiler can often approach
the efficiency of hand-tuned assembly code for these
tasks. An optimizing compiler can also reduce the
overhead of managing the C call stack by using op-
timizations such as function inlining, tail recursive
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call identification, and passing function arguments in
registers. In any case, the use of C does not preclude
writing (or rewriting) performance critical sections
of code in assembly when bottlenecks are apparent.

The rest of this paper is organized as follows. The
next section provides a brief overview of SeaStar. In
Section 3, we describe the tools that we have as-
sembled which enable C-based SeaStar firmware de-
velopment. Section 4 describes the C firmware in
detail, followed by a discussion of optimization tech-
niques in Section 5. Conclusions and final remarks
are given in Section 6.

2 SeaStar Overview

SeaStar is a system-on-a-chip ASIC that was de-
veloped by Cray for Red Storm [1]. It provides a
number of node support functions, including a pro-
grammable network interface and an interface to the
Reliability, Accessibility, and Serviceability (RAS)
system. A detailed description of SeaStar is pro-
vided in [3]. Here, we focus on the aspects of SeaStar
relevant to firmware development.

Figure 1 shows a high-level view of a Red Storm
node. Each node consists of an Opteron CPU, some
amount of host memory, and a SeaStar that at-
taches the host to the high-speed 3-D mesh network.
SeaStar is directly attached to the Opteron by an
800 MHz DDR, 16-bit wide HyperTransport con-
nection, which enables a relatively high-bandwidth,
low-latency path to host memory. Messages flow into
and out of a node under the control of a firmware
program that executes on the SeaStar’s embedded
PowerPC 440 CPU (PPC) [8], which operates at 500
MHz. A 6.4 GB/s Processor Local Bus (PLB) con-
nects the PPC to a small local SRAM, transmit and
receive DMA engines, a HyperTransport interface,
and a high-speed serial interface to the RAS sys-
tem. Each of these devices have their control regis-
ters mapped into the PLB so that the firmware can
control them with normal load and store operations.
The DMA engines have dedicated ports to the Hy-
perTransport interface that allow them to read and
write host memory without crossing the PLB.

The firmware uses the DMA engines to transmit
and receive messages from host memory. Transmit-
ting a message involves sending a series of DMA
commands to the transmit (TX) DMA engine. Each
non-contiguous region of host memory requires a dis-
tinct DMA command. Similarly, receiving a mes-
sage involves sending DMA commands to the receive

(RX) DMA engine. Once all of the DMA commands
for a message have been enqueued, no additional
firmware processing is required. The DMA engines
perform the necessary packetization and end-to-end
CRC verification autonomously. Once the message
transfer is complete, the firmware receives a comple-
tion notification. If this notification indicates that
an error has occurred, the firmware must take ac-
tion to handle it.1 This may involve retransmitting
the message or possibly halting the node if the error
cannot be handled.

Two types of memory are accessible by the
firmware. First, a small 384 KB bank of local SRAM
is available to store the firmware and its associated
data structures. This memory is statically mapped
into the top 384 KB of the PLB’s address space so
that it can be used in booting. Second, the firmware
can access host memory through 15 windows of 256
MB each by configuring mapping registers in the Hy-
perTransport interface. Reading host memory from
the PPC should be avoided if possible—our mea-
surements indicate that reading host memory has
approximately ten times higher latency than reading
local SRAM. The latency of writing to host memory
can be hidden somewhat because the PPC supports
up to four outstanding writes (and reads) without
blocking. It is interesting to note that any memory
mapped into the PLB, including device control reg-
isters and host memory, can be accessed by the RAS
system via the SeaStar’s high-speed serial interface.
This provides a useful back-door for debugging.

3 Development Tools

3.1 C Compiler

One of our first tasks when we received our devel-
opment hardware was to find a suitable C compiler
for the SeaStar’s embedded PowerPC 440 core. We
considered a number of possibilities but ultimately
chose GCC since it was what we were most familiar
with and had PowerPC 440 support. Additionally,
GCC may be freely modified and distributed to oth-
ers under the terms of the GNU Public License [6].

GCC tool-chains are typically built from source.
This requires downloading Binutils and GCC distri-
butions from the GNU web site, configuring them,
and then building them in the proper order. To facil-
itate this, we have created a pre-packaged SeaStar

1In practice, we have not observed any errors that were

not due to faulty hardware or firmware bugs.
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Figure 1: High-level view of Red Storm node

tool-chain distribution that is built using a simple
build script. The resulting GCC compiler executes
on whatever platform it was built on and generates
output targeting the PowerPC 440 (i.e., it is a cross-
compiler). A number of supporting GNU tools are
also built, including an assembler, a linker, and an
object disassembler.

The PowerPC 440 supports both big-endian and
little-endian operation. Traditionally, PowerPC ar-
chitectures store the most significant byte first in
memory (big-endian) and x86-based architectures,
such as the Opteron, store the least significant byte
first (little-endian). This presents a choice as to
what endianess the C compiler should target. If
the C compiler targets big-endian, all data struc-
tures exchanged with the Opteron need to be en-
coded and decoded due to the differing byte orders.
Targeting little endian eliminates the need for this
translation, however it has the potential to generate
less efficient code because GCC’s little-endian sup-
port for PowerPC is less mature than its big-endian
support. There are also some instructions, such as
lmw that are not supported in little-endian mode, so
we were unable to make use of them in block copy
routines.

We chose to target little-endian because it greatly
simplifies the interaction with the Opteron. In prac-
tice, most of the inefficiencies that we have observed
in the generated assembly can be worked around

by using simple techniques, such as adding a GCC-
specific alignment attribute to all structure defini-
tions.

3.2 Linking and Loading

The object code produced by the C compiler has to
be linked into a single image and loaded into the
SeaStar’s local SRAM. Linking is accomplished by
using the GNU linker, ld, along with a custom linker
script that we have developed. Loading takes place
using the standard mechanisms provided by Cray.

By convention, SeaStar’s 384 KB of local SRAM
is mapped at the top of the PPC’s virtual memory
space. The firmware code and data structures are
placed into this region by the linker according to
the commands in a linker script. Regions are defined
for uncached data, cached data, text (the firmware
code), and the stack. The uncached region is used
to store data that is shared with the Opteron. Data
that is only accessed by the PPC is stored in the
cached region. Both the text and stack regions may
also be cached since they are only accessed by the
PPC.

The linking step produces an ELF image of the
firmware. Two post-processing steps are required to
convert this into a format compatible with the Cray
loader. First, GNU objcopy is used to create a flat
binary image from the ELF image. This removes a
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significant amount of unnecessary information—for
our current firmware, a 166 KB ELF image is re-
duced to a 22 KB binary image. Second, an endian
swap is performed on the binary image. This is nec-
essary to compensate for an endian swap built into
the Cray loader. The net result is that the image
loaded into the SeaStar is the original, non-endian
swapped binary image.

To prepare for load, the default firmware image
provided by Cray is replaced with the C firmware
image. The Cray boot mechanism is then invoked
as normal. Several steps are performed by the
Cray loader in order to start the firmware executing.
First, while holding the PPC in reset, it uses the SSI
interface to load the firmware image and a Cray-
developed initialization shim into SeaStar SRAM.
Next, reset is de-asserted and the initialization shim
begins to execute. It performs a number early initial-
ization tasks, including configuring the PPC’s TLB
to map all of the SeaStar SRAM (out of reset, only
the top 4 KB is mapped [8]). When complete, the
loader shim performs an unconditional jump to the
address where the C firmware image was loaded. Fi-
nally, the firmware must set a flag at a well-known lo-
cation in uncached SRAM to notify the Cray loader
that it has begun executing.

3.3 Tracing

We have developed a low-overhead tracing mecha-
nism to enable C-based firmware to be debugged
and profiled. A trace point is created by calling ei-
ther trace(void) or trace val(uint8 t value) at
the desired location, the later taking a user supplied
value that will be stored in the trace record.

When a trace point is hit, an eight-byte trace
record is created and stored in a ring buffer located
in uncached SeaStar SRAM. Each trace record con-
tains the value of the program counter when the
trace point was hit, a timestamp, and possibly an
eight-bit user value.

At any point in time, a program may be run on the
Service Management Workstation (SMW) to fetch
and decode any node’s trace buffer. Figure 2 shows
an example of the output of this tool. Each line is a
decoded trace record. The first and second columns
are the timestamp and user value, respectively. The
next column is the function name and offset of the
trace point in that function. Finally, the time delta
between the current trace point and the previous
trace point is displayed.

When tracing is turned on at compile time, each

trace point incurs about 10 ns of latency. If it is
turned off, there is no penalty at all for the trace
points. We have kept the trace penalty low by dedi-
cating a PPC register for maintaining the current in-
dex into the trace ring buffer and by using the PPC’s
link register to obtain the address of the trace point
(i.e., the return address from the tracing function).
The PPC supports up to four outstanding memory
write operations so there is no need to wait for the
trace record to land in memory before proceeding.

As with many debugging and tracing techniques,
compiler optimizations such as inlining and tail re-
cursion elimination may cause errors in the trace
output’s symbol resolution. The user supplied value

can be used as a unique identifier, or it can be used
to provide a small amount of data to the user.

4 C Portals Firmware

This section describes the operation of the C-based
SeaStar firmware that we have developed. This
firmware provides the low-level support needed to
implement the Portals message passing API [14],
which is the lowest-level communication mechanism
on Red Storm.

Portals is an RDMA-like protocol with the pri-
mary difference being that addressing is by a set of
maskable match bits rather than by a fixed address
or remote-key. The receiver determines where in
host memory to put an incoming message by walking
a list of Memory Descriptors (MD), each contain-
ing a set of match bits and ignore bits. A match is
found when an MD is encountered that has the same
match bits as the incoming message, ignoring any
bit positions masked by the MD’s ignore bits, and
that also matches the source node ID and process
ID. MD’s can be auto-unlinked from the list when
they have received a specified number of transac-
tions or when they have been filled to capacity. This
style of matching semantics is well suited for imple-
menting MPI [13] and has proven flexible enough for
other upper-level protocols, such as Lustre [2] and
the Catamount [9] job launch protocol.

The C firmware was originally derived from the
Cray assembly-based firmware in November, 2004.
Since then, we have made a number of architectural
changes and performance optimizations. Some of
these changes have been incorporated into the Cray
firmware and, similarly, we have merged several of
Cray’s changes into the C firmware. We believe the
diversity introduced by having two distinct firmware
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e4681e8b: 24: 18ff0c4c mainloop+0014 (178 ns)

e4681ee4: 99: 63ff313c rx_complete+001c (84 ns)

e4681f0e: 0: 00ff318c rx_complete+006c (24 ns)

e4681f1a: 0: 00ff3198 rx_complete+0078 (374 ns)

e4681fd5: 5: 05ff12b4 handle_command+0030 (156 ns)

e4682023: 0: 00ff24b0 goaccel_tx_command+001c (80 ns)

e468204b: 0: 00ff24c0 goaccel_tx_command+002c (40 ns)

e468205f: 0: 00ff2124 resolve_source+0030 (18 ns)

e4682068: 0: 00ff212c resolve_source+0038 (102 ns)

e468209b: 0: 00ff2504 goaccel_tx_command+0070 (290 ns)

Figure 2: Example of tracedump tool output

implementations has been beneficial to both teams.
Here, we discuss only the C firmware, however, much
of this information also applies to the Cray firmware.

The C firmware currently consists of 3,434 source
lines of C code and 253 source lines of assembly
code, according to Wheeler’s SLOCCount tool [4].
When compiled with GCC 4.0 using optimization
level three (-O3), the resulting firmware image is 22
KB in size.

4.1 General Architecture

Figure 3 shows a high-level view of the host inter-
face to the C firmware. On the host, there are a
number of processes that use the Portals API to
send and receive messages. These processes are split
into two groups, termed generic and accelerated.
Generic processes forward all of their Portals API
calls to the OS kernel, which multiplexes them to
a single firmware mailbox. Accelerated processes,
on the other hand, send some of their Portals API
commands directly to a dedicated firmware mailbox.
Such commands are said to be offloaded to the NIC.
Some commands, such as those related to process
initialization, cannot be offloaded and are always for-
warded to the OS kernel.

The firmware processes commands that it receives
in its mailboxes. Each mailbox contains a command
and result FIFO. The host posts commands to the
command FIFO by incrementing the tail index in
the NIC’s mailbox structure. If the command re-
turns a result, the host busy-waits until the firmware
posts the result to the result FIFO. The use of FI-
FOs allows the host to post multiple commands be-
fore waiting for a result in some cases. In particular,
commands that do not return an immediate result

(e.g., transmit message2) can be efficiently streamed
to the firmware.

Each accelerated process and the generic Por-
tals implementation in the kernel contain an Event
Queue (EQ) for the firmware to post asynchronous
events into. Examples of asynchronous events are
’message transmit complete’ and ’message reception
complete’. Accelerated processes poll the EQ, if nec-
essary, when the user-level Portals library is entered.
The generic Portals implementation in the kernel is
interrupt driven and only checks the EQ when the
firmware has raised an interrupt. In order to reduce
the number of interrupts, the Portals interrupt han-
dler processes all of the new events in the generic EQ
each time it is invoked. Individual events are small
enough that they can be posted atomically by the
firmware, allowing the host to simply read the next
EQ slot to determine if a new event has arrived.

Limited NIC resources and OS limitations prevent
all processes from operating in accelerated mode.
Typically, there will be a small number of acceler-
ated processes (one or two on each Catamount com-
pute node) and the remaining processes will oper-
ate in generic mode. Supporting accelerated mode
for Linux processes is particularly difficult because
of memory paging—accelerated mode relies on mes-
sage buffers being physically contiguous in memory.
Catamount places application memory in physically
contiguous regions so it is straightforward to support
accelerated mode.

Currently, only generic mode has been fully imple-
mented in the C firmware. It was implemented first
because it was absolutely necessary for Linux nodes,

2Transmit commands can be thought of as returning a

result much later in the form of a ’message transmit complete’

event in the process’ event queue, but this may be hundreds

of microseconds after the command was posted, so it is not

efficient to busy wait for completion.
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where there are often many Portals clients, and it
would function correctly for Catamount nodes until
accelerated mode could be completed. Additionally,
since generic mode Portals operates in the OS ker-
nel and is interrupt driven, it allowed Cray to reuse
an existing reference implementation of Portals pro-
vided by Sandia. Accelerated mode requires that
the offloaded portions of Portals be reimplemented
for the SeaStar. Much of the infrastructure for accel-
erated mode is already in place and we are actively
working to complete it.

4.2 Data Structures

The firmware manages a number of data structures
needed to transmit and receive messages. Figure 4
depicts an abstract view of the most important of
these structures. First, there is one NIC Control
block that contains global information concerning
the entire firmware. Next, the accelerated host pro-
cess and the generic Portals implementation in the
OS kernel each have a dedicated process structure
and mailbox structure allocated to them. These
structures are one-to-one mapped and are split due
to caching requirements—the mailbox must be un-
cached so that coherency is maintained with the host
while the data in the process structure is accessed
only by the firmware so it can be stored in cached
memory. Each process structure has a pool of pend-
ings, split into upper and lower portions, that are
used to track in-progress message transmissions and
receptions. Finally, each node that the firmware is
sending a message to or receiving a message from
has a source structure allocated to it. There is one
pool of source structures for the entire firmware (i.e.,
all processes on each node).

Each pending is split into lower and upper por-
tions, which are one-to-one mapped. The lower
pending structure is located in cached SeaStar local
SRAM and contains all of the information needed
to progress and complete the message it represents.
The upper pending structure is located in host mem-
ory and contains all of the information needed by
the host regarding the message. In normal oper-
ation, the firmware never reads data from the up-
per pending structure because doing so requires a
high latency round-trip across the HyperTransport
link. The firmware does write information that is
needed by the host into the upper pending. The
upper pending structures are stored in cached host
memory and are automatically kept coherent with
respect to firmware writes by the Opteron’s mem-

ory controller.

Every firmware-level process has two pools of
pending structures, one managed by the firmware
and the other managed by the host. The firmware
managed pool is used for message receptions. When
a new message arrives, the firmware allocates a
pending from the target process’ RX pending free

list. The host managed pool is used for message
transmissions. To prepare to send a message, a host
process (i.e., an accelerated process or the generic
Portals implementation in the kernel) allocates a
pending structure from a free list that it maintains.

There is no dynamic allocation of any data struc-
tures by the firmware. All structures are pre-
allocated at initialization time and inserted into free
lists or slab caches, from which they may be rapidly
allocated for use. While this introduces compile
time constraints on the number of outstanding mes-
sages, in practice sizing these constants has not been
too difficult. Resource exhaustion is addressed more
fully in section 4.3.3.

The two primary consumers of SeaStar local
SRAM are the source structures and the lower pend-
ing structures. The memory occupied by these struc-
tures can be calculated by

M = (S ∗ Ssize) +

N∑

i=1

(Pi ∗ Psize)

where S is the number of sources, Ssize is the size of
each source structure, N is the number of firmware-
level processes, Pi is the number of pendings associ-
ated with process i, Psize is the size of each pend-
ing structure, and M is the SRAM occupied. For
the current firmware, there are 1,024 global source
structures and 1,274 pending structures allocated to
the generic process (N is currently 1). These struc-
tures are small enough that several more similarly
sized pending pools can be supported for additional
firmware-level processes.

4.3 Firmware Processing

When idle, the firmware executes in a tight polling
loop waiting for events. When an event occurs,
the corresponding event handler is dispatched. The
firmware is single threaded so handlers execute un-
til they return, at which point a new event can be
processed.
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4.3.1 Message Transmission

In order to transmit a message, the host must setup
the message header and then send a transmit com-
mand to the firmware. First, the host allocates a
pending structure from the pool that it manages
(i.e., the transmit pool). The host then stores the
Portals header in the upper portion of the pending
structure. Next, the host sends a transmit command
to the firmware, including the message’s pending ID,
target node ID, payload address in main memory,
and the number of bytes to transmit. If the message
buffer is not physically contiguous, the host must
pre-compute the commands for the TX DMA engine
and pass them to the firmware. DMA commands for
physically contiguous messages are generated by the
firmware.

When the firmware receives the transmit com-
mand, it looks up the lower pending structure us-
ing the pending ID that the host pushed down and
initializes it. If there is no source structure for the
destination node, a new one is allocated and initial-
ized. The lower pending structure is then enqueued
at the tail of the TX pending list in the NIC con-
trol block. All transmits, regardless of destination
or process type, are serialized through a single TX
FIFO.

Once the pending reaches the head of the list, the
firmware programs the TX DMA engine to trans-
mit the message. The header is first DMA’ed out of
the upper pending, followed by the payload DMA’ed
directly from main memory.3 If the message does
not fit into the TX FIFO, the transmit state ma-
chine will yield and return to the mainloop until
there is more room in the FIFO. Finally, when the
message has been completely sent, the firmware un-
links the lower pending from the TX pending list

and posts a completion event to the host process’
event queue. This completes the transmit from the
firmware’s perspective. The host posts the Portals
completion event to the application and then returns
the pending to its free list.

4.3.2 Message Reception

The RX DMA engine notifies the firmware when a
new message arrives from the network. In response,
the firmware inspects the message header to deter-
mine the source node ID and the target host pro-
cess ID. The source node ID is used to retrieve the
corresponding source structure from a hash table

3This is often referred to as zero-copy.

of active sources. If no source structure is found,
the firmware allocates a new one from its free list
and inserts it into the hash table. The host pro-
cess ID in the message header is used to look up the
target firmware-level process. Once identified, the
firmware allocates a pending from the target pro-
cess’ RX pending free list.

At this point, the future actions of the firmware
depend on whether the target process is a generic
process or an accelerated process. For generic pro-
cesses, the firmware writes the entire Portals header
into the upper pending, posts an event to the generic
Portals event queue on the host, and then raises an
interrupt. When the host receives the interrupt, it
reads the event from the event queue and uses it to
lookup the upper pending structure containing the
Portals header. The header is then used to perform
Portals matching on the host. Once the target mem-
ory descriptor has been identified, the host sends
a receive command to the firmware, including the
message’s pending ID, the payload address in main
memory, and the number of bytes to receive (and
implicitly the number of bytes to discard). Like the
transmit case, message buffers that are not phys-
ically contiguous have to have their receive DMA
engine commands pre-computed by the host. The
firmware uses the target buffer information in the
receive command to setup the lower pending struc-
ture.

For accelerated processes, Portals matching is per-
formed by the firmware. Therefore, there is no need
for the firmware to raise an interrupt to ask the host
where to put an incoming message. Once the tar-
get memory descriptor has been matched, the lower
pending structure can be setup immediately. Like
the generic case, the firmware writes the entire Por-
tals header into the upper pending structure. This
information is needed by the user-level Portals li-
brary when the firmware posts the message recep-
tion complete event.

Once the lower pending structure has been setup,
the firmware links it to the tail of the target source
structure’s RX pending list. When the pending
reaches the head of this list, the firmware programs
the receive DMA engine to deposit the message di-
rectly into the target buffer in host memory. Once
complete, the firmware posts a completion event to
the host process’ event queue. The host then uses
the information stored in the upper pending to post
the Portals completion event. Finally, the host sends
a release pending command to the firmware to indi-
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cate that it is done with the upper pending struc-
ture and that the firmware can return the pending to
the appropriate free list. This completes the receive
from the firmware’s perspective.

Unlike message transmission, there can be mul-
tiple receives in progress simultaneously—one from
each source node. The packets of multiple incom-
ing message streams arrive interleaved from the net-
work. Normally, the RX DMA engine can transpar-
ently handle de-multiplexing the interleaved packets
to the correct target buffers, based on the commands
programmed by the firmware. In exceptional cases,
there may be too many incoming messages for the
RX DMA engine to handle. This is treated as a
resource exhaustion case, described in the next sec-
tion.

4.3.3 Resource Exhaustion

There are a number of NIC level resources that can
be exhausted. For example, there may not be an
unused pending structure available to handle a new
message. Similarly, there may be too many sources
trying to send to a node simultaneously. When this
occurs, the firmware should become involved to re-
solve the situation.

The C firmware currently assumes that resource
exhaustion does not occur. This has been sufficient
to run several of Sandia’s applications on approxi-
mately 7,700 nodes of Red Storm, which at the time
of this writing is the maximum sized system par-
tition that we have had access to. We have care-
fully monitored firmware resource usage and have
never observed anything approaching dangerous lev-
els. However, we expect that production-level use
will occasionally trigger resource exhaustion. We are
currently working on a simple go-back-n protocol to
resolve resource exhaustion gracefully. The current
approach is to panic the node, which results in the
application failing.

5 Optimizations

Over time, we have added a number of optimizations
to the C firmware. This has resulted in MPI zero-
byte message latency falling from approximately
30 µs in the original C firmware to 4.9 µs currently.
This section describes several of the more signifi-
cant optimizations that may be be useful to oth-
ers who are developing SeaStar firmware. All per-
formance results in this section were obtained us-

ing MPI-level micro-benchmarks available from the
Network-Based Computing Lab at Ohio State Uni-
versity [11].

5.1 Caching

One of the most significant optimizations that we
have made is to enable the PPC’s instruction and
data caches. The SeaStar PowerPC 440 CPU imple-
mentation contains a 32 KB instruction cache and a
32 KB data cache. In general, data that is accessed
only by the firmware may be placed in cached mem-
ory. Data that is accessed by both the firmware
and external sources must normally be placed in
uncached memory. Write-through techniques, de-
scribed in Section 5.3, can sometimes be used to
reduce the performance impact of using uncached
memory.

Enabling the PPC caches required us to gain a
detailed understanding of Cray’s firmware loading
mechanism (Section 3.2). After much experimenta-
tion, we discovered that caching could be enabled
without crashing the PPC by making use of the
PPC’s second address space. Immediately after it
starts to execute, the C firmware creates an en-
tirely new virtual memory space in the PPC’s sec-
ond address space.4 Several of the memory regions
in this space are configured to be cacheable. The C
firmware then switches to the newly created address
space. From this point on, the firmware executes in
the newly created virtual memory space, which does
not conflict with the original memory space setup by
the Cray loader.

Figure 5 shows the performance of the C firmware
with no caching, only the instruction cache en-
abled, and both instruction and data caching en-
abled. Caching reduces small-message latency be-
tween approximately 7.75 µs and 11 µs. The large
jump from 8 byte to 16 byte messages is due to
a protocol switch (Section 5.2). After the switch,
there is more firmware processing performed per
message, which increases the overall advantage of
caching. The bandwidth curves for the three con-
figurations eventually hit the same asymptote at
around 1.1 GB/s.

5.2 Interrupt Elimination

Interrupting the host is a high latency operation and
should be avoided if possible. We added an opti-

4The PPC typically uses one of its address spaces for the

operating system and the other for user-level.
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Figure 5: Effect of PowerPC caching on latency and bandwidth

mization for very small messages that eliminates one
interrupt from each generic-mode message reception.
Normally, each generic-mode receive requires two in-
terrupts. The first is raised by the firmware when a
new message arrives to ask the host where to put the
message and the second is raised when the message
reception is complete. The very small message opti-
mization avoids the second interrupt by copying the
data payload up to the host before raising the first
interrupt. The host can then copy the message to its
final location immediately after performing Portals
matching.

Currently, we only perform this optimization for
messages that can be transfered in-line with the Por-
tals header. Due to packet size restrictions, the pay-
load capacity of the Portals header is limited to 12
bytes. The very small optimization could be applied
to larger message sizes with some additional work,
however eventually the cost of the extra copy will
negate any savings.

Figure 6 shows the effect of the very small mes-
sage optimization. The optimization saves approx-
imately 2.7 µs for messages of less than 12 bytes.
This implies that the cost of an interrupt to the host
is approximately the same—suggesting that acceler-
ated mode, which uses no interrupts, may have small
message latency in the two microsecond range.

5.3 Write-through Techniques

The firmware must store some data structures, such
as the NIC Control Block and the mailboxes, in un-
cached SeaStar local SRAM. It is often possible to
reduce the overhead of reading from these structures
by maintaining shadow copies of them in cacheable
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Figure 6: Effect of very small message optimization
on latency

memory. Fields accessed by external sources are
read and modified using the cached shadow copy and
then written-through to the uncached structure.

The NIC Control Block provides an illustrative
example of this technique. The NIC Control Block
contains a heartbeat field that is monitored by the
RAS system. If the firmware fails to increment the
heartbeat value on a timely basis, the RAS system
will mark the node as dead. In order to increment
the heartbeat, the firmware must read its present
value, add one, and then store the updated value.
To eliminate the uncached read in this sequence, the
C firmware maintains a cached copy of the NIC Con-
trol Block. The cached copy is always used to read
and update the heartbeat value. As a final step,
the updated value is written to the uncached NIC
Control Block. The C code for this looks like:

niccb.heartbeat = ++cached_niccb.heartbeat;
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All of the counters in the NIC Control Block are
updated in this way. Fields in the NIC control block
that are are only accessed by the firmware are always
accessed using the cached copy.

The write-through technique was also used to op-
timize the firmware’s FIFO manipulation routines.
The DMA engine command FIFOs are mapped into
the firmware’s virtual memory space using an un-
cached memory region. Each FIFO is managed by
head and tail pointers that are also mapped into
the memory region. The firmware updates the tail
pointer after it has written a new command to the
FIFO and the DMA engine updates the head pointer
when it is finished processing a command. A FIFO is
full when incrementing the tail pointer would result
in it equaling the head pointer. In order to optimize
the firmware’s FIFO manipulation functions, cached
copies of the head and tail pointers are maintained
by the firmware. The tail pointer is always read
and updated using the cached copy and then writ-
ten through to the uncached tail pointer memory lo-
cation. The firmware uses the cached head pointer
until there is a chance that the target FIFO might
be full. When this occurs, the firmware refreshes its
cached copy of the head pointer by performing an
uncached read.

When this style of FIFO optimization was applied
to all of the FIFOs manipulated by the firmware and
by the host, we measured a net savings of approxi-
mately 6 µs per message. The optimization was par-
ticularly effective for the host’s manipulation of the
mailbox FIFOs since it reduces the number round-
trip transactions across the HyperTransport link.

5.4 Pinning Globals in Registers

GCC provides a compiler-specific extension that al-
lows global variables to be pinned in specific regis-
ters. This technique can lead to more efficient and
smaller object code because many of the load and
store instructions related to the pinned global vari-
ables can be eliminated.

All C source files need to be aware of which reg-
isters have been reserved for globals, perhaps by in-
cluding the same header file. The following C code
defines three global variables pinned in registers r31,
r30, and r29, respectively:

register process_t *process asm ("r31");

register source_t *source asm ("r30");

register pending_t *pending asm ("r29");

Care must be taken to avoid using registers that
are reserved by the target platform’s Application Bi-
nary Interface (ABI), such as registers used to pass
function arguments. Also, if too many registers are
reserved in this way, the resulting register pressure
will cause GCC to generate inefficient object code.
The PowerPC 440 has 32 general purpose registers,
of which we have used up to ten registers (r22–r31)
for pinned global variables with positive results.

6 Conclusion

This paper has described our experiences developing
firmware for the SeaStar network interface using the
C programming language. We have presented the
development tools that we have assembled in order
to enable C-based firmware development for SeaStar,
including a GCC toolchain and a tracing tool that
we have developed. A detailed description of a C-
based firmware for SeaStar with functionality similar
to Cray’s assembly-based firmware has been given.
It is hoped that this firmware will be a good start-
ing point for other researchers who whish to create
custom firmware for SeaStar. Finally, we have pre-
sented several of the optimization techniques that
we have found beneficial. In the coming months, we
plan to further reduce the latency of the C firmware
by offloading much of the Portals API from the host
to the SeaStar.
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